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ABSTRACT
Objectives: Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, 
radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-
edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the 
prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs).

Materials and Methods: The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, 
New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., 
from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist’s reports. 
The radiologist’s reports were considered the “gold standard” for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural 
network (CNN) model was developed using 176 head CT scans.

Results: The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. 
The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity 
(70%) and moderate sensitivity of 40%.

Conclusion: An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist 
clinicians in screening MLS cases in an emergency setting.
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INTRODUCTION
Traumatic brain injury (TBI) remains a major global public 
health challenge resulting in numerous fatalities at the 
scene and leaving a significant percentage of survivors with 
lifelong disabilities.[1] It is frequently cited that TBI leads to 
the death or hospitalization of 10 million people annually 
with a heavy impact on low- and middle-income countries.[1] 
Severe TBI is the primary cause of hospitalization, disability, 
and post-injury mortality worldwide, often referred to as 
a “silent epidemic.”[2] Addressing the unique challenges 
associated with brain injuries requires specialized knowledge, 
comprehensive evaluation, and ongoing support to achieve 
optimal outcomes for individuals affected by these injuries. 
Unlike bodily injuries, brain injuries are not always externally 

visible. They can be “invisible,” lacking obvious external 
signs making their diagnosis more challenging and prone 
to being overlooked or misdiagnosed. Any asymmetry 
detected in a head computed tomography (CT) scan may be 
indicative of underlying pathology or abnormality within 
the brain such as the presence of midline shift (MLS). The 
MLS occurs because of TBI and has severe implications. The 
development of automated tools for MLS detection using 
image processing techniques is of paramount importance. 
Implementing an automated detection system can promptly 
flag cases requiring urgent review facilitating timely care 
provided by clinicians.[3] Careful screening by the automated 
system might also provide insights for further management 
enabling first-line physicians to reconsider injury severity 

https://ruralneuropractice.com

Journal of Neurosciences in Rural Practice

https://orcid.org/0000-0002-5499-0746
https://orcid.org/0009-0008-3050-4476
https://orcid.org/0000-0002-2572-8327
https://orcid.org/0000-0002-3927-2148
https://dx.doi.org/10.25259/JNRP_490_2023


Agrawal, et al.: 3D CNN for automated MLS detection

Journal of Neurosciences in Rural Practice • Volume 15 • Issue 2 • April-June 2024  |  294

and prioritize accordingly.[3] Although the automated system 
is not intended to surpass the expertise of specialists such 
as neurosurgeons, neurologists or neuroradiologists, it can 
save their time and offer valuable objective information in 
emergency settings. The article also explores the various 
challenges that come with MLS detection and some of 
the recent advancements in this field. This paper presents 
the development of a deep learning-based neurotrauma 
screening tool designed to automatically alert neurologists to 
the presence of MLS in TBI cases.

MATERIALS AND METHODS
Data acquisition

Head CT scans were prospectively collected from the 
Department of Neurosurgery, All India Institute of Medical 
Sciences, New Delhi, for the study. The study received ethics 
approval from the Institute’s Ethics and Scientific Committee. 
The data collection spanned a period of nine months from 
January 2021 to September 2021 and included consecutive 
head CT scans of patients coming to the neurosurgery 
department. The head CT scans were obtained from two 
different machines, namely Siemens (Germany) and GE 
Healthcare (Illinois, United States of America). At the 
hospital, all head CT scans were stored in the standard Digital 
Imaging and Communications in Medicine format, which 
includes text information embedded within the images. 
Accessing and displaying the CT images was facilitated 
through the Oviyam Picture Archiving and Communication 
System (PACS) hardware. The head CT scans along with 
their corresponding clinical data were retrieved from the 
Oviyam PACS system. Consecutive clinical data including 
demographic details and Glasgow coma score were 
downloaded from the clinical patient record system. The 
radiologist’s report of the CT scans, used as the gold standard 
for evaluation, was also included in the metadata collected 
alongside the head CT scans. The local Picture Archiving and 
Communication System (PACS) servers were the source of 
data extraction and storage for this study. To ensure patient 
privacy and compliance with regulations, all data underwent 
anonymization following the Health Insurance Portability 
and Accountability Act guidelines.

Head CT dataset

Upon acquisition, the collected data underwent comprehensive 
analysis to assess various aspects of the head CT scans. Among 
the considerations, the slice thickness was examined, ranging 
from 0.625  mm to 5  mm. For inclusion in the study, only 
scans with a slice thickness of 1 mm and a 30 s kernel were 
considered. In addition, head CT scans with discernible 
artifacts were excluded from the dataset to ensure data quality. 
To differentiate true MLS cases from those mimicking normal 
cases or artifacts, a knowledge-based classification system 

was employed. This system incorporated rules that utilized 
quantified imaging features and anatomical information. 
The dataset was divided into training, validation, and testing 
classes facilitating the development and evaluation of the 
automated detection system. The training class encompassed 
a total of 156 head CT scans consisting of 78 normal cases and 
78 cases with MLS. The testing class, used for evaluating the 
system’s performance, comprised 10 normal cases and 10 MLS 
cases. Consequently, the dataset contained a total of 176 head 
CT scans.

Technological approaches for automated detection

The chosen technique for automated detection in this 
study is the three dimensional (3D) convolutional 
neural network (CNN). The architecture of the 3D CNN 
comprises convolutional layers, each consisting of fixed-
size convolutional filters responsible for extracting relevant 
features from the input images. Subsequently, these features 
are spatially reduced and accumulated using pooling 
layers, employing either max pooling or average pooling 
techniques. The extracted features are then passed through 
fully connected layers to reach the output units of the 
network. The utilization of fully connected layers, along with 
appropriate activation functions, enables the classification 
of inputs based on the reduced set of feature vectors.[4] 
Developing the model considered the quantity and quality 
of the available data. During the training phase, the model 
was monitored using validation metrics and employed the 
“save best model” option to optimize performance. The 
pre-processing, hyperparameters, and data augmentation 
techniques were applied consistently across the training of 
the 3D CNN models. However, variations were introduced 
in the training modules to achieve the best results. Below are 
the details of the specific model configuration that attained 
the highest performance outcomes during experimentation.

Implementation and model configuration

Labels

The binary labels for each imaging study, indicating negative 
or positive MLS, were derived from the clinical radiology 
reports associated with the respective studies as detailed in 
the supplementary material. It is important to note that the 
labels were assigned at the level of the entire head CT imaging 
study and not to individual images within each head CT.

Pre-processing

Each head CT study encompassed a variable number of 
512 × 512 (pixel) axial images, mainly due to differences 
in head size. To achieve uniformity across studies, volume 
resizing was performed standardizing the image dimensions 
to 128 × 128 × 64. In addition, min-max normalization was 
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applied to all volumes. The window level was set at −300, and 
the window width was set at 1400. Contrast enhancement 
was performed using a contrast factor of 2, and Gaussian 
smoothing with sigma = 1 was applied. As part of the data 
augmentation process for training images, rotations were 
introduced at angles of (20, −10, −5, 5, 10, 20).

Hyperparameters

The model’s hyperparameters were meticulously chosen to 
optimize performance. The batch size was set at 2, and the 
initial learning rate was set to 0.0001 employing exponential 
decay. A decay rate of 0.96 was utilized with decay steps at 
100000 following the staircase. The model was trained over 
200 epochs with an early stopping mechanism to avoid 
overfitting. For this model, the binary cross-entropy loss 
function was employed, and the learning rate was maintained 
at 0.0001 with optimization performed using the Adam 
optimizer.

Architecture of the 3D CNN Model

The architecture of the 3D CNN model is depicted in 
Figure 1. It comprises four blocks followed by a global average 
pooling layer, two fully connected dense layers, and a dropout 
layer. The input to the CNN architecture consists of head 
CT scans with dimensions (128, 128, 64) and one channel. 
The architecture is composed of four blocks each containing 
3D convolutional layers with subsequent ReLU activation 
functions. In addition, each block includes a 3D MaxPooling 
layer and a batch normalization layer to enhance the learning 
process. The dimensions of the input are progressively 
reduced through the four blocks. The first block reduces 
the dimensions to (63, 63, 31, 64), the second block further 
reduces to (30, 30, 14, 64), the third block reduces to (14, 14, 6, 
128), and the fourth block further reduces to (6,  6,  2, 256). 
Following the final block, a global average pooling layer 
is applied to generate a vector. This vector is then passed 
through a fully connected layer, with a dropout layer applied 
subsequently to mitigate overfitting. The output layer consists 
of a single neuron producing a binary classification output 
(1 or 0) indicating the presence or absence of hemorrhage 
in the head CT scan. The performance of the algorithm was 
evaluated using accuracy and loss values.

Training

During training, the 3D CNN model underwent various 
training modules, and the details of the best-performing 
model are provided below. The model was trained for 200 
epochs with early stopping implemented at 60 epochs using 
a validation loss with a patience of 50. The training and 
validation data were split in a ratio of 60:40, respectively. This 
approach allowed the model to achieve optimal performance 
effectively detecting MLSs in head CT scans.

RESULTS
Model analysis and performance

Our study demonstrates that deep neural networks trained 
on clinical imaging datasets can effectively detect critical 
radiological conditions such as MLS with reasonable accuracy. 
The screening tool underwent testing on 20  cases to assess 
its performance. The training model exhibited the ability to 
detect 7 MLS cases out of the 10 true MLS cases and correctly 
identified 4 non-MLS cases out of the 10 true non-MLS cases 
resulting in an overall accuracy of 55%. In addition, the 
model showed a specificity of 70% and a sensitivity of 40%. 
The training plot graph, depicting the accuracy and loss of the 
model during the training process, is illustrated in Figure 2. 
The recorded values for loss and accuracy were 0.4682 and 
0.7133, respectively while the validation set yielded a loss 
of 0.4628 and an accuracy of 0.7368. The confusion matrix 
for the best-performing training plot providing a visual 
representation of the model’s performance is presented in 
the Figure  3. The robust performance of our deep learning 
algorithms indicates their promise in potentially enhancing 
the speed and accuracy of MLS detection in head CT scans.

DISCUSSION
In a head CT scan, the brain midline is represented by an 
imaginary line connecting the attachment centers of the falx. 
This line delineates the ideal midline, which hypothetically 
passes through the pineal gland, septum pellucidum, and 
cerebral falx dividing the brain into two equal hemispheres.[5] 
Deviation of the midline structure, whether it be the pineal 
gland, third ventricle or septum pellucidum, from the ideal 
midline is labeled as a MLS. However, most of the authors 

Figure  1: Proposed 3D convolutional neural network architecture for midline shift. CNN: 
Convolutional neural network.
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often describe MLS in terms of the displacement of the septum 
pellucidum relative to the ideal midline observed on CT 
images.[6,7] Various techniques are present to manually quantify 
MLS. The Brain Trauma Foundation proposed a method that 
involved measuring the intracranial width at the level of the 
foramen of Monro and then determining the distance from 
the inner skull to the septum pellucidum.[3] Another method 
involves measuring the maximum distance from the midline 
formed by the anterior falx and posterior falx to the septum 
pellucidum at the axial level of the foramen of Monro.[3,6,8] 
Another approach suggested measuring the distance from a 
line connecting the most anterior and posterior visible points 
on the falx to the farthest point on the septum pellucidum.[9]

In recent years, there has been a growing interest in leveraging 
artificial intelligence (AI) techniques for automating radiological 

procedures in TBI cases. However, a comprehensive 
investigation and synthesis of AI-based studies focused on 
identifying MLS in TBI cases are currently lacking.[10] Building 
upon our previous work on intracranial hemorrhage detection 
in TBI, which outlined future research directions,[11] the 
present research addresses this gap by developing a 3D CNN 
model specifically designed for MLS detection from head 
CT scans in TBI cases. This study presents a novel technique 
dedicated to MLS detection. To our knowledge, it is the only 
work exclusively developed for this purpose. Consequently, 
direct comparison with existing literature is not feasible. 
However, we conducted a review of related works on MLS 
automation and briefly summarized the existing literature. 
In addition, one of our works provides an elaborate review of 
all related literature, particularly focusing on automated MLS 
quantification.[11] The field of automatic MLS analysis has 
witnessed significant advancements with several approaches 
proposed to identify and quantify MLSs from head CT scans. 
These automatic methods capitalize on the brain’s symmetry or 
employ specific anatomical landmarks such as the falx cerebri, 
frontal horns of the lateral ventricles, and the third ventricle.[4] 
By exploring and comparing these approaches, our aim is to 
provide valuable insights into their effectiveness, limitations, 
and potential applications in clinical practice.[12]

The symmetry-based approach

This approach is based on the concept of symmetry around 
the brain’s midline. It does not require the recognition of 
specific anatomical landmarks. Instead, it seeks to identify 
a curve that connects all displaced and deformed structures 
known as the “deformed midline” (DML).[4] Liu et al.[5] 
developed the hemorrhage-MLS heuristic model to explore 
the relationship between intracranial hemorrhage and MLS. 
The model utilized 11 CT images and 423 midline points 
employing 10-fold cross-validation. However, clear results 
were not provided. A  ventricular geometric pattern-related 
approach was done using anatomical information from 
170 CT sets to identify the ideal midline and the MLS.[13] Liao 
et al. proposed the “skull axis” method for MLS measurement 
on CT slices at the level of the foramen of Monro. They tested 
the algorithm on 81 clinical cases demonstrating moderate 
accuracy in detecting MLS and lower accuracy for large 
MLSs (>5 mm) with spontaneous intracerebral hemorrhage. 
However, their approach had limitations including manual 
slice selection and limited performance in severe TBI 
cases.[7] On the lines of symmetry-based approach, a shape-
matching technique was used for MLS identification aiming 
to correlate MLS with intracranial pressure (ICP) levels. The 
method was evaluated on 391 slices from 17 TBI patients 
yielding errors of approximately 1 mm for the ideal midline 
and <2.25 mm for the DML in over 80% of cases. However, 
difficulties were encountered when ventricles could not be 
identified due to significant brain deformation. The study 

Figure 2: Training plot graph showing model’s accuracy and loss. 
train: Training dataset, val: Validation dataset, acc: Accuracy.

Figure  3: Graphical representation to show 
confusion matrix for the best preforming 
training plot. MLS: Midline shift.



Agrawal, et al.: 3D CNN for automated MLS detection

Journal of Neurosciences in Rural Practice • Volume 15 • Issue 2 • April-June 2024  |  297

achieved an accuracy of approximately 70% with a sensitivity 
of about 65% and specificity of about 73%.[12]

Some researchers faced challenges in estimating larger 
MLS and focused on addressing this issue. One such paper 
developed a computer-based approach using MATLAB 
algorithms to detect MLS larger than 5  mm. The software 
was validated on over 200  patients suspected of acute 
TBI demonstrating high sensitivity (98%) for detecting 
radiological signs of acute TBI. The method achieved a 
sensitivity of 92% and specificity of 85% for detecting MLS 
larger than 5  mm. However, due to limited patients with 
such findings and additional false-positive results, the 
positive prediction rate of their MLS detection method was 
only 70%.[14]

The landmark-based approach

In landmark-based algorithms, the focus is on recognizing 
specific structures, typically frontal horns of the lateral 
ventricles, septum pellucidum, third ventricle, etc. 
These structures serve as anatomical markers for MLS 
measurement. Among the identified landmarks, the most 
suitable ones are chosen to construct the DML, which 
is then compared to the ideal midline for quantifying 
MLS. This approach allows for targeted analysis and 
measurement of MLSs based on anatomical markers within 
the ventricular regions.[6,14] One of such landmark-based 
approach developed a fully automatic tool, which showed 
a strong correlation with manual drawing, detecting both 
small MLSs (<2 mm) and large MLSs (>10 mm). This study 
demonstrated good sensitivity (84.6–91.7%) and specificity 
(80–97.4%) for detecting MLSs of 2  mm and 5  mm 
> 10 mm.[3] A quantification tool, called Icobrain, is based on 
2D U-Net and can identify and measure the MLS. The study 
conducted for developing Icobrain included a dataset of 38 
images and achieved a median absolute difference in MLS 
of 0.86  mm and a classification accuracy of 0.89 for MLS 
detection at 5  mm threshold.[15] A CNN-based model was 
employed to estimate the extent of MLS in TBI patients.[16] 
In 2017, a study introduced an MLS measurement method 
with an average processing time of approximately 10 s. The 
automated system exhibited an overall accuracy of 90.24%, 
which further improved to 92.68% with manual calibrations. 
This method also reported an accuracy of 0.90 for detecting 
MLS larger than 5 mm in a study involving 43 subjects.[17]

One approach proposed MLS measurement by recognizing 
the septum pellucidum and tested the system on images 
from 96  patients. The algorithm demonstrated accuracy 
in measuring MLS up to 30  mm with a mean difference 
of 0.23 ±  0.52  mm compared to manual measurements 
in 78  cases. This approach achieved a sensitivity of 94%, 
specificity of 100%, and a positive predictive value of 100% 
for MLS >5 mm. However, accurately measuring large MLS 

with significant hematoma remained challenging.[18,19] In 
another study, Gaussian mixture clustering was applied to 
an experimental dataset with 565  patients for automated 
MLS detection and quantification. The method achieved 
a maximum distance error of 4.7 ± 5.1  mm, with over 
100 patients having MLS larger than 5 mm.[5]

Chilamkurthy et al.[20] conducted MLS detection on two 
datasets: Qure25k (25,000 images, area under the curve 
[AUC] 0.93) and CQ500  (500 images, AUC 0.97). Their 
method achieved an average sensitivity of 0.89 for MLS 
detection (>5  mm). On the other hand, Nguyen et al.[8] 
proposed a landmark-based system with two modules for 
MLS detection and quantification using CQ500 dataset 
achieving a total accuracy of 0.89. Most research efforts focus 
on MLS quantification, some primarily emphasize measuring 
the shift rather than its detection. In contrast, our work is 
specifically developed with the purpose of MLS detection 
contributing to the advancement of automated MLS 
detection and quantification in TBI cases. The developed 3D 
CNN model represents a significant step toward improving 
MLS detection accuracy and has the potential to enhance 
diagnostic efficiency in TBI management.

Future directions

Identification of MLS in an emergency setting is a strenuous 
job. As a radiologist, one must read all the CT scans of a lot 
of patients and look out for abnormality in all the normal 
cases.[3] The assessment of secondary injuries post-TBI 
such as MLS and ICP, holds significant clinical relevance 
for patient management.[15] Among the various imaging 
modalities, CT of the brain is commonly performed and 
interpreted by radiology trainees.[5,14] Previous studies have 
consistently demonstrated a strong correlation between 
a considerable MLS observed on CT scans and adverse 
outcomes including disability or mortality in TBI cases.[13,21] 
One crucial measurement utilized in the assessment of brain 
symmetry changes is the MLS, which serves as an essential 
indicator of pathological severity. Severe brain trauma leads 
to brain swelling causing imbalanced pressures between the 
left and right hemispheres. This pressure imbalance leads to 
the shift and deformation of the ideal midline into a curve 
causing the MLS.[5,13] A MLS exceeding 5  mm on initial 
brain CT images is considered significant and predictive of 
poor neurological outcomes.[3,17,21] While the current work 
focuses on MLS detection, it does not quantify MLS. To 
further enhance the outcomes of this study, future directions 
involve expanding the dataset and continuing to train the 3D 
CNN model. Including data with various slice thicknesses, 
kernels, and larger datasets will enhance the robustness 
of the model and improve overall accuracy. With broader 
dataset incorporation, the automated MLS detection system 
can become a valuable triaging tool or an immediate notifier 
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for patients with critical findings, particularly in emergency 
settings upon acquiring a head CT scan. The proposed 
system holds promise for facilitating teaching and research 
endeavors and streamlining the search through large datasets 
of CT scans. However, to fully harness the potential of this 
model, additional studies are required to address limitations 
and validate performance across diverse patient populations 
and different scanning equipment.

CONCLUSION
In this study, we have successfully developed an automated 
screening tool capable of detecting MLS on head CT scans in 
patients with TBI. The CNN-based approach demonstrated 
acceptable sensitivity for MLS detection indicating its 
potential applicability in routine clinical practice. Our study 
demonstrates the feasibility and effectiveness of automated 
MLS detection using deep learning algorithms. By addressing 
future directions, refining the model’s capabilities, and 
conducting further validation, we envision integrating this 
technology as a valuable tool in clinical settings enhancing 
patient care and improving diagnostic efficiency.
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