Images in Neurosciences

Characteristic Vertebral Imaging in Sickle Cell Disease

Rajaraman Kartikueyan, Siddhartha Roy Chowdhury, Prasad Krishnan, Sayan Das¹

Department of Neurosurgery, National Neurosciences Centre, ¹Department of Radiodiagnosis, Peerless Hospital and B K Roy Research Centre, Kolkata, West Bengal, India

A 32-year-old woman presented with multiple episodes of self-limiting, severe back pain over several years. She was a known patient of sickle cell anemia. Magnetic resonance imaging scans of the dorsal and lumbar spines showed "H-shaped" vertebrae on coronal and sagittal imaging [Figures 1 and 2].

Sickle cell anemia is a condition where red blood cells (RBCs) contain abnormal hemoglobin (Hemoglobin S).^[1,2] When deoxygenated this hemoglobin becomes insoluble and aggregates with similar molecules distorting the shape of the RBCs making them less deformable while they flow through the capillary bed.^[1] The abnormally shaped RBCs also have a propensity to adhere to the endothelium.^[1] All these lead to vascular occlusion and tissue infarction which manifests clinically as the painful "sickling crisis."^[1,2]

Figure 1: Coronal magnetic resonance slice showing "H-shaped" lumbar vertebrae (Lincoln log vertebra) with central end plate depression consequent to infarction

Access this article online	
Quick Response Code:	Website: www.ruralneuropractice.com
	DOI: 10.4103/0976-3147.203816

The microvasculature of the endplates of the vertebrae is a low flow system fed by terminal branches that arise from the arterial grid at the centrum of the vertebrae.^[3] Further, the endplates themselves are usually <1 mm thick and are thinnest in the central region.^[4] The combination of both

Figure 2: Sagittal magnetic resonance slice (T2 sequences) showing multilevel bulging of intervertebral discs into the vertebral body

Address for correspondence:

Dr. Rajaraman Kartikueyan, Department of Neurosurgery, National Neurosciences Centre, Peerless Hospital Campus, 2nd Floor, 360 Panchasayar, Kolkata - 700 094, West Bengal, India. E-mail: doctorkartik2007@gmail.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Kartikueyan R, Chowdhury SR, Krishnan P, Das S. Characteristic vertebral imaging in sickle cell disease. J Neurosci Rural Pract 2017;8:270-1.

these factors leads to endplate infarction with a sharply defined central depression in sickle cell disease as seen in our patient.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

References

- Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. Radiographics 2001;21:971-94.
- 2. Ntagiopoulos PG, Moutzouris DA, Manetas S. The fish-vertebra sign. Emerg Med J 2007;24:674-5.
- 3. Lotz JC, Fields AJ, Liebenberg EC. The role of the vertebral end plate in low back pain. Global Spine J 2013;3:153-64.
- 4. Moore RJ. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 2006;15 Suppl 3:S333-7.