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Abstract Background A wide range of exploratory methods is available in psychometrics as
means of gathering insight on existing data and on the process of establishing the
number and nature of an internal structure factor of a test. Exploratory factor analysis
(EFA) and principal component analysis (PCA) remain well-established techniques
despite their different theoretical perspectives. Network analysis (NA) has recently
gained popularity together with such algorithms as the Next Eigenvalue Sufficiency
Test. These analyses link statistics and psychology, but their results tend to vary,
leading to an open methodological debate on statistical assumptions of psychometric
analyses and the extent to which results that are generated with these analyses align
with the theoretical basis that underlies an instrument. The current study uses a
previously published data set from the Ages & Stages Questionnaires: Social-Emotional
to explore, show, and discuss several exploratory analyses of its internal structure. To a
lesser degree, this study furthers the ongoing debate on the interface between
theoretical and methodological perspectives in psychometrics.
Methods From a sample of 22,331 sixty-month-old children, 500 participants were
randomly selected. Pearson and polychoric correlation matrices were compared and
used as inputs in the psychometric analyses. The number of factors was determined via
well-known rules of thumb, including the parallel analysis and the Hull method.
Multidimensional solutions were rotated via oblique methods. R and Factor software
were used, the codes for which are publicly available at https://luisfca.shinyapps.io/
psychometrics_asq_se/.
Results Solutions from one to eight dimensions were suggested. Polychoric correla-
tion overcame Pearson correlation, but nonconvergence issues were detected. The Hull
method achieved a unidimensional structure. PCA and EFA achieved similar results.
Conversely, six clusters were suggested via NA.
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Introduction

In one of his seminal papers, John Tukey said, “Far better an
approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which
can always be made precise (p. 13).”1 With this statement,
Tukey rooted his perception of statistics while statisticians
were becoming overreliant onmathematical formalization at
the cost of practical aspects of data analysis. Tukey further
mentioned the gap between statistical models and reality
and that several statistical tests tend to achieve dissimilar
results even when they utilize the same data set as their
respective source of analyses.2

Particularities aside, Tukey’s quotation can be adequately
applied to theoretical and analytical processes that are used
to explore the internal structure of a psychological test.
Today, partially through technological revolution, an almost
infinite number of statistical methods can be used as
exploratory analyses with varying results. Consequently,
the decision-making process of the dimensionality of a
tool can be moot, hanging between a statistically defensible
solution and sometimes theoretically substantive coher-
ence. Some authors even argue that this is an expected
product of weak theories in psychology,3 mentioning
that “statistical solutions to the replication crisis will only
help ensure solid stones; they don’t help us build the
house.”4

Currently, there is agreement that psychometrics and
statistics are at the core of the scientific method in psychol-
ogy.5 Within this relationship, some even consider that
psychometrics concepts are the front-end part (e.g., the
definition of reliability) of the back-end calculations (e.g.,
the correlation matrix used to support the reliability defini-
tion) performed by data analysis and statistics. However,
regardless of this relationship, the goal of psychometricians
and statisticians when analyzing a particular empirically
obtained data set may gradually vary.3

When analyzing the internal structure of an instrument,
psychometricians aim to make calculations that enable a
result’s interpretation from the theoretical perspectivebased
on the cognitive or affective processes assumed to have
driven the observed responses. As suggested by Fabrigar et
al, “a model that fails to produce a rotated solution that is
interpretable and theoretically sensible has little value (p.
281).”6 In other words, empirical results should unveil a
substantive theoretical framework.7–10

In turn, statisticians tend to be versatile and trained for a
wide range of objects. Nonetheless, this extensive knowledge
might be associated with only peripheral or incipient famil-
iarity with field-based analyses, including the modeling of
psychological data.11 Thus, in contrast to psychometricians,

statisticians are expected to first apply a cautious view
toward the development of data analysis to achieve results
that will be shielded from criticism, even if some of the
procedures that are employed eventually overshadow the
psychological phenomena that once motivated the analy-
ses.12 These two perspectives can lead to disputes, and
statisticians and psychometricians can become entangled
in an eternal tug of war about how to conduct the analytical
process. The relationship between statistics and science is
well documented in the literature.5,13,14

We, thus, explore the above scenario in this study through
a data set composed of a large number of children assessed by
the Ages & Stages Questionnaires: Social-Emotional (ASQ:
SE).15 The current goal is to present and discuss several
alternative solutions to the internal structure of the ASQ:
SE. The exploratory methods used to check ASQ:SE di-
mensionality include: exploratory factor analysis (EFA), prin-
cipal component analysis (PCA), and exploratory graph
analysis (EGA). This study also makes use of both R and
Factor as analytical software as well as several computer-
based algorithms and stopping rules of dimensionality anal-
yses. Theoretical interpretations are discussed to a
lesser degree.

Methods

Study Population
The present study received ethical approval from the Ethical
Committee of Pontifical Catholic University of Rio de Janeiro,
Brazil (Public notice no. 0367/2011). The sample for the
present study was drawn from larger census data. The
present study conducted a secondary data analysis. The
ASQ:SE project gathered data between 2010 and 2012 in
Brazil at the time of a large-scale developmental assessment
of children from 6 months to 5 years of age. Additional
information on the goals of each section of this project can
be found elsewhere.15

Participants
The original sample consisted of a census research including
22,331 sixty-month-old children enrolled in all 468 public
daycare centers and preschools of the city of Rio de Janeiro.
For the present study, the sample size was determined based
on previous evidence of the effect of model size on practical
fit indices of structural equation models.16 These findings
suggest that the sample size of 500 participants is adequate
to obtain an accurate confirmatory fit index, Tucker–Lewis
index, and root mean square error of approximation in
correctly specified models.

Therefore, a total of 500 children were randomly selected
for the analyses. The randomness processwas initiated in the

Conclusion The statistical outcomes for determining the factor structure of an
assessment diverged, varying from one to eight domains, which allowed for different
interpretations of the results. Methodological implications are further discussed.
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fairsubset R package,17 with the seed defined at 15 and
RNGversion set at 3.6. This subsample comprised 276 males
(55.2%) and 224 females (44.8%).

Measures

Ages and Stages Social-Emotional Questionnaire in
5-Year-Old Children
The ASQ:SE was developed as a low-cost and psychometri-
cally sound screening tool that accurately reflects a range of
emotional and social behavioral competencies in infants,
toddlers, and preschool age children. These behavioral areas
include self-regulation, compliance, communication, adap-
tive functioning, autonomy, affect, and interaction with
peers.18 All responses use a gradual format. The responses
consist of “Most of the time” (0 points), “Sometimes” (5
points), and “Rarely or never” (10 points).

This tool has been used in different cultures and con-
texts.19 Previous cross-country studies that have used EFA
and confirmatory factor analysis, as well as item response
theory have concluded that the variability of ASQ:SE ob-
served variables can be adequately explained in two dimen-
sions namely a social and an emotional one.15,20,21 The ASQ:
SE has been widely recognized as a useful screening tool for
practitioners, clinicians, and families to identify children
who may be facing a challenging environment or may be
at risk of developmental delays.19

In this study, the ASQ:SE 60-month-old children were
selected for the sample, as social and emotional skills are
most easily discriminable in the age of 5, as pointed out by
the specific literature.22,23 The behavioral competences ex-
plored relate towhether the child is interested in things such
as toys, people, and/or food; is experiencing tantrums; can
calm down after periods of exciting activities; and can look
when someone talks to him/her. Responses, in turn, are
analyzed in a gradual scale, in which higher scores suggest
greater difficulty in child development.

Cronbach’s α for this interval was 0.86 (95% confidence
interval [CI]: 0.85–0.88), with an average interitem correla-
tion of 0.17 (95%CI: 0.15–0.19). This age interval is composed
of 32 items, in which respondents choose one option that
best aligns with a target behavior of the child.

The mean score for these participants was 41 (standard
deviation¼36.4, range: 0–205). This result was below the
cutoff score, suggesting the participants were not at risk of
developmental delays. No differencewas found between this
score and the score that was obtained with the full data set
(t22829¼�0.982, p¼0.326).

Statistical Analysis
All analyses were conducted within a random subset of the
main data set in which 500 participants were included. No
missing cases, inconsistencies, or outliers were found. The
ASQ:SE responses to all items were modified as recom-
mended by the statistical literature: 0 was transformed to
1, 5 was transformed to 2, and 10 was transformed to 3.
Polychoric and Pearson correlations were computed and
compared. Because of the ordinal level of the items, the

polychoric correlation was mainly used as an input in the
psychometric analyses together with an arbitrarily set of
subjects and the entire sample. Smoothing methods were
used to deal with convergence issues.24–26

Different methods to identify the number of factors or
components that should be retained were explored via scree
plot through parallel analysis (PA), the Hull method, the
elbow rule, the Kaiser rule, Next Eigenvalue Sufficiency
Test (NEST),27 and EGA. PCA was also employed. Although
this is not a common factor model or latent trait analysis as
psychometricians understand it to be, this method is fre-
quently used in psychometric analysis and methodological
papers.

The first methods rely on a similar graphical structure, in
which a plot with eigenvalues is presented in descending
order. Eigenvalues indicate the proportion of variance that is
explained by each factor or component. The results of the
scree plot depend on current data, but the machinery that
underlies PA serves to (1) generate a simulated data set with
N observations that are randomly sampled from the varia-
bles, (2) iteratively extract eigenvalues, (3) order them
from largest to smallest, and (4) compute summary statistics
of these simulated results to compare them to the first
results.28

The Hull method is based on a numerical convex Hull-
based heuristic and can be regarded as a generalization of the
scree test, in which a plot is built with the goodness-of-fit
(GoF) measure versus degrees of freedom (df). These heu-
ristics seek to identify the best balance betweenGoFand df in
in the following fashion: (1) the range of factors are consid-
ered to be determined, (2) the GoF of a series of factor
solutions is assessed, (3) df of the series of factor solutions
are computed, and (4) the elbow is located in the higher
boundary of the convex Hull of the Hull plot.29 The NEST is a
recent algorithm that was developed for R software that
imports features of comparison data into the revised PA.

Recommendations obtained through each method were
performed within the polychoric and Pearson matrix solu-
tion, which enabled the comparison of the both estimates.
The weighted least squares solution was defined as the
default factor estimation.30,31 Promax oblique rotation was
defined for multidimensional solutions. In line with under-
lying phenomena, oblique rotations enable factors to be
correlated. Robust unweighted least squares was used with
the Hull method because it is more often suggested.32

Varimax (orthogonal) rotation was performed within the
PCA framework as recommended.

Finally, another set of analysis was performed through
EGA. The results that derived from this analysis were also
plotted into an easy-to-read network graph, wherein items
in each dimension are color-coded, and edges are the partial
correlation between two nodes given all other nodes in the
network.33 The analytical flowchart in►Fig. 1 displays these
steps.

All of the analyses were performed in R 4.0.434 with
tidyverse, psych (2.1.3), NEST, EGAnet (0.9.8), and Factor
10.10.03. Codes and data are freely available at https://
luisfca.shinyapps.io/psychometrics_asq_se/.
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Results

The distribution of ASQ:SE items was right-skewed, indicat-
ing deviation from normality and that the items’meanswere
greater than the medians. Skews ranged from 0.87 to 6.04.
Kurtosis ranged from �0.81 to 37.29. The Kaiser–Meyer–
Olkin test result was 0.86. The Bartlett test result was
4629.517 (df¼496, p<0.001). These first results are tradi-
tionally required as preliminarily steps of factor
analysis. ►Fig. 2 shows the results of the scree plot. Three
analytical solutions could be made: (1) elbow rule, which is
based on sharp breaks in the plot, (2) Kaiser rule, which
retains values with eigenvalues>1, and (3) PA, which is
based on a random data simulation and compares the scree
plot of the observed datawith the plot that is obtained from a
random data matrix of the same size.

The scree plot shows that (1) the polychoric correlation
extracted higher eigenvalues than Pearson correlation, and
(2) PCA outperformed the explained variance when com-
pared with FA, which is further discussed below. Polychoric

correlations of the PCA results were 10.72, 4.46, and 1.91,
respectively. The Pearson correlation results were 6.83, 3.12,
and 1.6. The EFA outcomes were 10.13, 3.70, and 1.22 for
polychoric correlations and 6.12, 2.26, and 0.83 for Pearson
correlations.

These results allow for flexible determination of the
number of factors with partial convergence to retain two
or three factors. However, as suggested by the current
literature, the use of polychoric correlations in ordinal
variables26 and determination of the number of factors
that were retained remained congruent when considering
the polychoric matrix as the input.

Despite subjectivity of the elbow rule, this strategy
emphasizes the retention of two factors. The Kaiser rule
herein suggested the retention of three factors or eight
components. The PA indicated the retention of three factors
or two components when arbitrary sets were employed or
eight factors and four components when all workable data
were used. The NEST algorithm also recommended extract-
ing eight factors. ►Table 1 shows possible solutions that
were derived from these analyses, including the Pearson
correlation matrix that was used as the input source.

Using a different strategy, the Hull method suggested
retaining one single factor. This unidimensional solution
achieved a GoF of 0.936 with df of 464 (►Table 2).

These recommendations were fitted to data. ►Table 3

presents some of the results. The loadings (either factor or
component) described the relationship between common
factors and their indicators. These indices were computed
using polychoric and Pearson correlations to compare both
results. In turn, the cumulative proportion is an index of the
extent to which the variance can be accounted for by
extracted factors or components and is based on the average
of the commonality.

Lastly, the EGA returned six clusters. This method is based
on network psychometrics and has recently gained visibility.
Its interpretation is directly related to its statistical method.
Edges correspond to partial correlation coefficients between
two variables after conditioning all other variables in the
network and a latent causal mechanism is not entirely
necessary.35 ►Fig. 3 presents this result side-by-side with
the previous one.

Discussion

The present study sought to present and discuss several
alternative results to the internal structure of the ASQ:SE.
Our results were a fundamental source of evidence because
they checked the dimensionality of the assessment.Moreover,
these analyses bridged psychological theoretical roots of a tool
and its statistical findings.36,37 The main findings indicated
that (1) PCA and FA tended to produce similar results, (2)
polychoric correlation outperformed Pearson correlation and
extracted higher eigenvalues than Pearson correlation but
resulted in convergence problems, and (3) the number of
factors that were retained allowed a unidimensional solution
(Hullmethod)andsolutions thatwerecomposedof sixclusters
(EGA) to uphold. These results are discussed below.

Fig. 1 Flowchart of psychometric data analysis. ASQ:SE, Ages &
Stages Questionnaires: Social-Emotional; KMO, Kaiser–Meyer–Olkin;
NEST, Next Eigenvalue Sufficiency Test; PCA, principal component
analysis.

Fig. 2 Screen plot with the exploratory factor analysis (EFA) and
principal component analysis (PCA) results that were obtained with
polychoric and Pearson correlations.
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First, the solution obtained from PCA and FA methods
completely agreed in terms of placing the item in its factor
with the greater loading, with results reproducing some
previously published evidence.15,38 From the statistical an-
gle, both methods analyze the internal structure of a psy-
chological test via multivariate analysis and some literature
further considers that FA is a generalization of PCA.39

The overlappingfindings that were produced by these two
approaches have mathematical foundations in the way the
decomposition of variance is performed. The total variance of
each variable is formed by its shared variance (communality,
h2) and the unique variance (broken down into specific and
error variance). EFA modeling accounts for communality
only, relying its analyses in a reduced correlation matrix.40

PCA, on the other hand, is a data reduction method only,
assuming that all variance is common or shared, with no
division. Its models consider that the total variance equals

the common variance, with no need of accounting for the
unique variance. In this case, its statistical procedure operates
through a linear combination of the observed variables, there-
by aiming at creating components to summarize the original
data while preserving as much information as possible.

The model-implied variance-covariance matrix of EFA is
described as Σ ¼ Λ Ψ ΛT þ Θ, whereas this matrix of PCA is
described as Σ ¼ Λ Ψ ΛT. In both equations, Λ is a matrix of
factor loadings,Ψ is a latent factor covariancematrix, andΘ is
a matrix of residuals.41

In summary, as pointed out by Maxwell, (1) PCA is a
formative model that (2) aims to maximize the variance, (3)
without requiring an implicit hypothesis of the structure of
covariance of the variables.42 In turn, (1) EFA reproduces
correlations7,43 and (2) is well described as a latent reflexive
variable model, but (3) although this method is a “sophisti-
cated correlational method to locate regularity and trends in
a large data set (p. 76),”44 it explicitly seeks to unveil the
nature and number of (latent) factors or constructs and
causal relationships among them.7,45,46

Despite the similarities of exploratory analyses, PCA has
limited utility in confirmatory analyses with few GoF indices
and also assumes a formative model instead of a reflexive
model as previously described. This latter condition is com-
monly used by certain branches of psychometrics to criticize
the use of PCA instead of EFA to deal with psychological data.

In the second result obtained, we found that eigenvalues
that were produced by polychoric correlation were higher
than eigenvalues that were produced by Pearson correlation.
Determination of the numbers of factors that should be
retained in EFA is intimately related to eigenvalues, and
this result can foster different decision-making processes.

Table 1 Analyses, stopping rule, and extraction results from different methods

Input matrix Stopping rule Extraction Solution

Pearson Parallel analysis PCA 3 components

EFA 7 factors

Elbow rule PCA 2 components

EFA 2 factors

Kaiser rule PCA 8 components

EFA 2 factors

Hull method (Factor software) EFA 1 factor

NEST (R package) EFA 8 factors

Polychoric Parallel analysis PCA 2 components (arbitrarily set)
4 components (all sample)

EFA 3 factors (arbitrarily set)
8 factors (all sample)

Elbow rule PCA 2 components

EFA 2 factors

Kaiser rule EFA 3 factors

PCA 8 components

Hull method (Factor software) EFA 1 factor

Abbreviations: EFA, exploratory factor analysis; PCA, principal component analysis.

Table 2 Hull method results

Factors GoF df Scree test value

0 0 496 0

1 0.936 464 17.248a

2 0.989 433 6.353

3 0.997 403 3.779

4 0.999 374 1.726

5 1 346 0

6 1 319

Abbreviations: df, degrees of freedom; GoF, goodness-of-fit.
aThe software suggested factor retention.
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The current literature indicates that polychoric correla-
tion is the most suitable method for analyzing data that are
obtained by ordered items, such as Likert scales.47,48 How-
ever, this method builds on the assumption of underlying
bivariate normality, which may not be the case of the
distribution of ASQ:SE items. Previous simulation studies
showed that solutions that are obtained using polychoric
correlations provide a more accurate reproduction of the
measurement model that is used to generate data. These
studies also concluded that polychoric correlations were the
most consistent and robust estimators, regardless of sample
size and population correlation, and were the ones that
tended to produce higher factor loadings and common fit
indices within the EFA framework and confirmatory factor
analysis.

However, some disadvantages and limitations that have
been discussed in the literature were also noticed in this
study. The nonconvergence problem is often detected by
other studies, and its resolution (e.g., the use of smoothing
corrections) can severely impair the reproducibility aspect of
the results and provide unstable estimates and unstable GoF
measures.25,49 Our data also suggested an overfactor result.

Additionally, some studies suggested that estimations of
polychoric correlations are unstable as a psychological tool if
there are a large number of items to analyze, if they have five
or more response alternatives, or if small sample sizes are
used as the input.50 To these limitations, a simulation study
revealed that empirical eigenvalues of Pearson correlations
generally outperformed those with tetrachoric correlations,
a special case of polychoric correlations.25

Finally, multiple and partially opposite stopping rules
arose from the methods that were used in this study. This
result is widely known in psychometrics. There is a general
consensus that the factor retention decision is still the most
difficult area of EFA that depends on several (human-made)
choices.43 This issue also explains the reason why some
authors suggest using the term “unrestricted model” instead
of EFA.

This choice illustrates the psychological theoretical per-
spective of a tool and its statistical findings, sometimes
referred to as an abductive procedure.51 As previously dis-
cussed, from a purely statistical perspective, this procedure
depends on stringent cumulative steps that seek to deter-
mine whether and how much of the derived solution is
defensible. From the perspective of roots of a psychological
tool, a solution needs to be theoretically interpretable.
Solutions that consisted of one to eight factors or compo-
nents were found.

In summary, the Hull method achieved a unidimensional
solution using 5-year ASQ:SE data for illustration. Despite
statistical plausibility, the unidimensional solution that de-
rived from this approach appeared to be inadequate in
capturing all aspects of development that a child experiences
during early stages of development. The results of this
unidimensional solution must also face substantial evidence
that socioemotional development is a heterogeneous con-
struct,18,52,53 thereby greatly limiting clinical application of
this solution.Ta
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The two-dimensional solutions were obtained using the
elbow rule. In the context of the ASQ:SE, these factors are
often known as social and emotional. Social development
refers to the manner in which a child develops friendships
and other relationships and the ways in which a child
handles conflicts among peers.54 The regulation of emotional
arousal and emotional expressiveness are also encompassed
in the way a child regulates his/her own emotions in diverse
situations.

Three factors were suggested in the PA solution. From the
statistical perspective, despite being considered one of the
most accurate techniques for determining the number of
factors to retain, the available evidence for PA ismixed in this
regard.24,55,56 This third factor emerging after the PA sug-
gestion brought together items relating to a child’s more-
than-expected clinging, self-regulation, sleeping problems
with the presence of tantrums, and eating difficulties. There-
fore, the new factor contained clinically mixed items, weak-
ening its interpretation. The statistical plausibility and
psychological interpretation of the solutions that contained
more than three dimensions were limited and thus not
interpreted.

The last statistical method performed was the EGA. Its
clusters varied in terms of the item quantity and theoretical
perspective. The characteristics of tantrums while sleeping
and ability to independently calm himself/herself down
when upset formed the group with the fewest items (in
purple in ►Fig. 3). Items related to pervasive symptoms and
aggressiveness were grouped together into a specific cluster

(in red), as items related to affective behavior and communi-
cation (in yellow) were too. The theoretical appeal of this
solution is fragile, sometimesmaking its interpretation quite
difficult.

Limitations

There are a couple of limitations in this research study. As the
results were not based on a data set with a known data
processing generation (e.g., a simulated data set), the com-
parison between solutions cannot be looked in respect to a
true model. Another limitation is the widely recognized
assumption that different exploratory models within statis-
tics will often give about different outputs and their con-
clusions will tend to vary. In addition, the results could have
changed if the chosen extraction method and the rotation
strategy were modified. However, despite having clear lim-
itations, we showcased a common scenario very much
experienced by researchers: when the study of the internal
structure of a test is deemed and taken note of.

Conclusion

When any psychological tool is conceptualized, a set of
studies integrating theoretical assumptions, empirical data
collection, statistical requirements, and psychometric stud-
iesmust be performed to delimitate that the results obtained
through the use of the tool are assessing what was intended
and producing reliable and stable results. In the absence of

Fig. 3 Graphical representation of exploratory factor analysis (EFA) and principal component analysis (PCA) models and network analysis
results.
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psychometric studies, the results lack scientific interpreta-
tion, are limited, and should not be used.57

The present study demonstrated that exploratory analy-
ses tend to achieve different solutions, occasionally with
different and contrafactual interpretations. These diverse
possibilities also arise when traditional statistical assump-
tions of psychometricmodels aremet. This output appears to
allow a convenient (and sometimes questionable) use of
psychometrics but also works as a guide to enhance con-
nections between theoretical and substantive psychological
models and statistical procedures.

Finally, this psychometric study of internal structure of a
test is performed to integrate statistical plausibility and
theoretical bases. The existence of multiple models and
solutions is an undeniable issue that can highlight the
theoretical fragility of psychological theories, but it can
also pave the way toward progress, even at the cost of
abandoning commonly used methods, including procedures
that are described in this study.

Note
Data and codes are available at https://osf.io/z6gwv/.
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