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ABSTRACT
Objectives: It can be challenging in some situations to distinguish primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM) based 
on magnetic resonance imaging (MRI) scans, especially those involving the corpus callosum. e objective of this study was to assess the diagnostic 
performance of deep learning (DL) models between PCNSLs and GBMs in corpus callosal tumors.

Materials and Methods: e axial T1-weighted gadolinium-enhanced MRI scans of 274 individuals with pathologically confirmed PCNSL (n = 94) 
and GBM (n = 180) were examined. After image pooling, pre-operative MRI scans were randomly split with an 80/20 procedure into a training dataset 
(n = 709) and a testing dataset (n = 177) for DL model development. erefore, the DL model was deployed as a web application and validated with the 
unseen images (n = 114) and area under the receiver operating characteristic curve (AUC); other outcomes were calculated to assess the discrimination 
performance.

Results: e first baseline DL model had an AUC of 0.77 for PCNSL when evaluated with unseen images. e 2nd  model with ridge regression 
regularization and the 3rd model with drop-out regularization increased an AUC of 0.83 and 0.84. In addition, the last model with data augmentation 
yielded an AUC of 0.57.

Conclusion: DL with regularization may provide useful diagnostic information to help doctors distinguish PCNSL from GBM.

 Keywords: Image classification, Deep learning, Convolutional neural network, Glioblastoma, Lymphoma

is is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work 
non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2023 Published by Scientific Scholar on behalf of Journal of Neurosciences in Rural Practice

INTRODUCTION
Glioblastoma (GBM) and primary central nervous system 
lymphoma (PCNSL) are common malignant brain tumors[1,2] 
and the prognosis for these intracranial tumors is poor.[3,4] 
Due to the differences in their radiological appearance, pre-
operative magnetic resonance imaging (MRI) scans can help 
identify PCNSL from GBM. In detail, GBM is characterized 
by a solid homogenous enhancement with central 
hypointense necrosis, whereas PCNSL is characterized by a 
solid homogeneous enhancement.[5,6] However, pre-operative 
dexamethasone injection for vasogenic edema therapy 
causes PCNSL necrosis, which is mistaken for GBM on MRI 
images.[7] In addition, corpus callosal tumors are a challenge 
for classifying these two entities.

Machine learning (ML) has been utilized to distinguish 
PCNSL from GBM.[8-10] However, ML remains a semi-

autonomous method for classification that needs the feature 
extraction process from images before model development 
and prediction.[10,11] Hence, the introduction of deep learning 
(DL) marks the beginning of a paradigm shift in image 
classification. is approach automatically incorporates 
the feature extraction and model development stages.[12-15] 
erefore, DL has been studied to distinguish these tumors 
using image classification. McAvoy et al. used the DL 
model to classify PCNSL and GBM. ey reported the area 
under the receiver operating characteristic curve (AUC) of 
0.94–0.95.,[12] while Zhang et al. used DL for differentiating 
PCNSL, GBM, and tumefactive demyelinating lesions, with 
diagnostic performances between 0.95 and 1.00.[14]

In clinical practice, the biopsy of corpus callosal tumors for 
tissue diagnosis is a challenge. e mortality rate from biopsy 
has been reported to be 1.1%, occurring from postoperative 
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intracranial bleeding.[5,16] Hence, the present study aimed 
to assess the diagnostic performances of the DL models 
between PCNSLs and GBMs at the corpus callosum.

MATERIALS AND METHODS
Study design and study population

is is a historical cohort study of 283 patients with PCNSL 
or GBM who had confirmed diagnoses from tissue specimens 
by a pathologist between January 2010 and December 2021. 
Patients were excluded as follows: (1) patients with missing 
MRI scans; (2) patients with inadequate MRI with movement 
artifacts. Following these criteria, 274 patients were selected. 
Descriptive statistics were utilized to investigate clinical and 
imaging findings using the R version  4.4.0 (R Foundation, 
Vienna, Austria).

Convolutional neural network (CNN)

e workflow of the present study is demonstrated, as 
shown in [Figure  1]. A  CNN architecture comprises three 

consecutive convolutional-pooling layers and a fully-
connected classification layer. e activation function was a 
rectifier linear unit, and the batch size was 32. e model was 
trained for 30 epochs, stochastic gradient descent optimized 
with the Adam optimizer, and the initial learning rate set to 
0.001.

In the first baseline model, regularization and data 
augmentation were not performed, while regularization 
was conducted in the second, third, and fourth models. 
Ridge regression (L2) regularization and a drop-out of 0.25 
were done for the second and third models, respectively. In 
the fourth model, data augmentation was employed using 
random vertical and horizontal flips, rotation, and zoom.

Model development

e diagnostic performance of DL models was trained on 
MRI to classify PCNSLs (class 1) and GBMs (class 0) using 
the training dataset for DL model development. erefore, 
the diagnostic accuracy and loss of the training and 
testing datasets were used to assess the models’ diagnostic 

Figure 1: Workflow of image classification in corpus colossal tumor.
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performance during model development. erefore, 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), accuracy, F1 score, and AUC 
were calculated as the performance matric from the validated 
dataset with unseen images of corpus callosal images. In 
detail, the predictions of the DL models were compared with 
the pathological results by a pathologist as the gold standard. 
In addition, we evaluated the model’s discrimination of four 
models using the AUC.[17] e DL models were developed 
and validated using Python software with Keras version 2.4.0 
(Python Software Foundation).

Model deployment as a web application

After validation, the DL model which had the best diagnostic 
performance was deployed as a web application in clinical 
practice. e web application was performed using Streamlit 
version 0.74.1 (Streamlit Inc.).

Ethical considerations

A Human Research Ethics Committee approved the present 
study (REC. 65-186-10-1). Because it was a retrospective 
analysis, the present study did not require patients’ informed 
consent. However, the identity numbers of patients were 
encoded before analysis.

RESULTS
Characteristics of patients

e patients in the present study included 94 (34.3%) PCNSLs 
and 180  (65.7%) GBMs. In detail, 43.5% of corpus callosal 
tumors were GBM and 56.5 % were PCNSL, as shown in 
[Table 1]. Of those, 70.1% got pre-operative steroid injections 
and 67.9% of the group overall had central necrosis. For corpus 
callosal tumors, central necrosis was observed in 43.5% found 
in 85% (17/20) of GBMs and 11.5% (3/26) of PCNSLs.

e total number of MRIs was 1000 images. erefore, 228 
MRIs of corpus callosal tumors were 50/50 split into the 
validated dataset, and the remaining included 772 MRIs of 
non-corpus callosal tumors as the pooled dataset. e pooled 
dataset was randomly split as follows: 709 images (80%) were 
in the training dataset, and 177 images (20%) were selected 
for the testing dataset.

DL model development and validation

Each model reached the plateau stage after 30 epochs of 
training. e first baseline model was trained without 
regularization/data augmentation and had a testing accuracy 
of 0.69, but the testing loss conversely rose away from the 
training loss, as shown in [Figure 2a]. e 2nd and 3rd models 
have trained with the L2 and drop-out regularization, 
respectively. As a result, the testing accuracy of the 2nd  and 

3rd  models was 0.72 and 0.73, respectively. However, the 
testing loss of the 2nd model was reduced than the 3rd model 
when epochs proceeded, as shown in [Figure  2b and c]. 
Finally, data augmentation was performed for the training 
of the 4th  model and the testing accuracy was 0.61, but the 
testing loss eventually converged to the training loss, as 
shown in [Figure 2d].

As shown in [Table  2], the performance of all DL models 
for the diagnosis of PCNSL was evaluated using unviewed 
MRIs from the validation dataset. In terms of results, the 
1st model had sensitivity, specificity, PPV, NPV, accuracy, and 
F1 score of 0.59, 0.94, 0.91, 0.70, 0.77, and 0.72, respectively. 
When the ridge regression and drop-out regularization were 
performed, the accuracy of the 2nd and 3rd models rose by 0.83 
and 0.84, respectively. At 0.68, the validation accuracy of the 
4th model was the lowest among the DL models. As shown in 
[Figure 3], the AUC of the 2nd and 3rd models had high levels 
of discrimination at 0.83 and 0.84, respectively, while the 
1st model had acceptable discrimination with an AUC of 0.77.

DL-based web application for deployment

e 2nd model showed a high level of diagnostic performance. 
As a result, a web application was constructed and launched. 
e tool is simple to use by scanning a quick response code or 
acquiring the uniform resource locator. New MRI images will 
be imported through computers or cell phones. e output 
is predicted as a diagnosis through the web application, as 
shown in [Figure 4].

DISCUSSION
In the present study, we demonstrated the possibility of 
using a DL model to distinguish PCNSLs from GBMs. 
Several methods for classifying these two cancers have 
been investigated, such as advanced MRIs, ML, and DL. 
Horger et al. compared apparent diffusion coefficient maps 
between these malignancies for differentiation and reported 
that sensitivity and specificity were 73–84% and 89–100%, 
respectively.[18] Furthermore, the classification of PCNSLs 
and GBMs was predicted using a support vector machine 
(SVM) and multilayer perceptron of supervised ML, with 
a maximum accuracy of 69.2%. Nguyen et al. conducted 
a systematic review and meta-analysis of ML studies for 
image classification of PCNSL from GBM. ey found 
that the reported AUC of the ML models in diagnosing 
PCNSL ranged from 0.878 to 0.979, and SVM was the most 
common algorithm used to perform image classification.[19] 
However, these methods require the expertise of specialists 
for classification, which may cause excess workload, whereas 
the DL method includes image feature extraction and 
model development in the architecture. is approach is 
an alternative approach for use as a screening tool to assist 
clinicians in situations where specialists may be limited.
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e baseline DL model without regularization has 
discrimination at an acceptable level. However, diagnostic 
performance could be enhanced by regularization with 
the same training dataset. L2 and drop-out regularizations 
improved the AUCs of models to high discrimination, while 
the performance of data augmentation was unacceptable in 
the validation process. Smirnov et al.[20] demonstrated that 
dropout regularization could reduce the error rates using 
both testing and validated datasets for image classification, 
while Majanga and Viriri used dropout regularization for 
image segmentation of dental images and reported that the 

model with the dropout technique improved the accuracy 
of 91.3%; the model without dropout had an accuracy 
of 89.0%.[21] From prior studies, data augmentation was 
performed to improve and help build a more reliable image 
classification problem using DL.[22] Jacaruso. demonstrated 
data augmentation techniques in an electrocardiogram which 
improved performance from the accuracy of the baseline 
model from 82% to 88–90%.[23]

e DL model with L2 regularization in the present study 
exhibited high sensitivity, making it a predictive model for 
use as a screening tool in clinical practice. Pewsner et al. 

Table 1: Clinical characteristics of patients.

Factor Corpus callosal tumor (n=46, %) Non-corpus callosal tumor (n=228, %) Total cohort (n=274, %)

Gender
Male 21 (45.7) 127 (55.7) 148 (54)
Female 25 (54.3) 101 (44.3) 126 (46)

Mean age-year (SD) 53.6 (12.8) 54.2 (14.3) 54.1 (14.1)
Age group-year

<15 0 (0) 3 (1.3) 3 (1.1)
>30–60 32 (69.6) 149 (65.4) 181 (66.1)
>60 14 (30.4) 76 (33.3) 90 (32.8)

Number of tumor
Single 23 (50.0) 158 (69.3) 181 (66.1)
Multiple 23 (50.0) 70 (30.7) 93 (33.9)
Mean size of tumor-cm (SD) 4.9 (1.6) 4.7 (1.7) 4.7 (1.7)

Main tumor location
Frontal lobe 0 (0) 71 (31.1) 71 (25.9)
Temporal lobe 0 (0) 72 (31.6) 72 (26.3)
Parietal lobe 0 (0) 37 (16.2) 37 (13.5)
Occipital lobe 0 (0) 7 (3.1) 7 (2.6)
alamus 0 (0) 8 (3.5) 8 (2.9)
Basal ganglion 0 (0) 2 (0.9) 2 (0.7)
Periventricular region 0 (0) 25 (11.0) 25 (9.1)
Pineal region 0 (0) 2 (0.9) 2 (0.7)
Cerebellum 0 (0) 1 (0.4) 1 (0.4)
Brainstem 0 (0) 3 (1.3) 3 (1.1)
Corpus callosum 46 (100) 0 (0) 46 (16.8)

Lateralization
Left 0 (0) 103 (45.2) 103 (37.6)
Right 0 (0) 93 (40.8) 93 (33.9)
Midline 46 (100) 4 (1.8) 50 (18.2)
Bilateral 0 (0) 28 (12.3) 28 (10.2)

Central necrosis 20 (43.5) 166 (72.8) 186 (67.9)
Midline shift-cm

<0.5 43 (93.5) 124 (54.4) 167 (60.9)
≥0.5 3 (6.5) 104 (45.6) 107 (39.1)

Preoperative dexamethasone 24 (52.2) 168 (73.7) 192 (70.1)
Operation

Biopsy 41 (89.1) 76 (33.3) 117 (42.7)
Resection 5 (10.9) 152 (66.7) 157 (57.3)

Diagnosis
PCNSL 26 (56.5) 68 (29.8) 94 (34.3)
Glioblastoma 20 (43.5) 160 (70.2) 180 (65.7)

PCNSL: Primary central nervous system lymphoma, SD: Standard deviation
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proposed that a high-sensitivity tool is reliable when its 
prediction is negative because it rarely misdiagnoses people 
who have the condition.[24] When the screening tool is 
combined with telemedicine and teleconsultant technologies, 
this strategy will provide significant benefits for patients 
in terms of effective treatment and management as well as 
reduced clinician workload. In a prior study, Wong and Tsai. 
used DL technologies with a telehealth strategy for screening 
and monitoring glaucoma patients.[25]

Although the DL models in the present study had 
acceptable to high performance, there are some limitations 

that should be acknowledged. T1-Gd MRIs were used 
for model development in the present study; therefore, 
various sequences of MRIs would enhance the diagnostic 
performance in the future study. Moreover, we need 
additional images to enhance the model’s ability to 
differentiate PCNSL from GBM. According to experts, a 
good rule of thumb for image classification using DL is 
1,000 images/class, with a large amount of training data.[26] 
Multi-center studies will address the issue and provide more 
images of the specific tumor location for training the DL 
model.

Table 2: Diagnostic performances for primary central nervous system lymphoma among models.

Model Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI) Accuracy (95%CI) F1 (95%CI)

1st model 0.59 (0.46–0.72) 0.94 (0.88–1.00) 0.91 (0.83–1.00) 0.70 (0.59–0.80) 0.77 (0.69–0.84) 0.72 (0.59–0.85)
2nd model 0.82 (0.72–0.92) 0.84 (0.74–0.93) 0.83 (0.74–0.93) 0.82 (0.73–0.92) 0.83 (0.76–0.90) 0.83 (0.73–0.93)
3rd model 0.75 (0.64–0.86) 0.92 (0.86–0.99) 0.91 (0.83–0.99) 0.79 (0.69–0.88) 0.84 (0.77–0.90) 0.82 (0.71–0.93)
4th model 0.75 (0.64–0.86) 0.61 (0.48–0.74) 0.66 (0.54–0.77) 0.71 (0.58–0.84) 0.68 (0.59–0.76) 0.70 (0.59–0.81)
CI: Confidence interval, PPV: Positive predictive value, NPV: Negative predictive value

Figure 2: Training and testing accuracy and loss. (a) 1st model, (b) 2nd model with L2 regularization, (c) 3rd model with drop-out regularization, 
and (d) 4th model with data augmentation.
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CONCLUSION
DL with regularization has the potential to provide clinicians 
with reliable diagnostic performance in distinguishing 
PCNSL from GBM.
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